LaurentMat Class {2 X 2 Matrices}
Initialization
LaurentMat<double> matrix;
Associated Functions
void setMat (Laurent< T > &AA, Laurent< T > &BB, Laurent< T > &CC, Laurent< T > &DD) void Det (Laurent< T > &oup) void MatAdd (LaurentMat &X, LaurentMat &Y) void MatSub (LaurentMat &X, LaurentMat &Y) void MatMult (LaurentMat &X, LaurentMat &Y) void TZ (Laurent< T > &t) void SZ (Laurent< T > &s) void dispMat () void scale (T s) void MatInv (LaurentMat &Inv) void getLpoly (Laurent< T > &P, int N)
setMat sets the matrix. The Laurent Polynomials are entered as (1,1), (1,2),(2,1) and (2,2).
Laurent<double> lpd,hpd,lpr,hpr; lpoly(name,lpd,hpd,lpr,hpr); LaurentMat<double> matrix; matrix.setMat(lpd,lpr,hpd,hpr);
Det finds the determinant of the matrix while you can use dispMat() to display the matrix.
Laurent<double> determinant; matrix.Det(determinant); cout << "The Matrix : " << endl; matrix.dispMat(); cout << endl; cout << " The Determinant : "; determinant.dispPoly();
The Output is
The Matrix : Laurent Matrix (1,1) : -0.176777*z^(1)+0.353553*z^(0)+1.06066*z^(-1)+0.353553*z^(-2)-0.176777*z ^(-3) (1,2) : 0.353553*z^(0)+0.707107*z^(-1)+0.353553*z^(-2) (2,1) : 0.353553*z^(1)-0.707107*z^(0)+0.353553*z^(-1) (2,2) : 0.176777*z^(2)+0.353553*z^(1)-1.06066*z^(0)+0.353553*z^(-1)+0.176777*z^( -2) The Determinant : -0.03125*z^(3)+0*z^(2)+0.375*z^(1)+1.38778e-017*z^(0)-0.6875* z^(-1)-1.38778e-017*z^(-2)+0.375*z^(-3)+0*z^(-4)-0.03125*z^(-5)
TZ and SZ functions set the T(Z) and S(Z) matrices (see the Sweldens/Daubechies paper).
LaurentMat<double> T1,S1; T1.TZ(lpd); S1.SZ(hpd); cout << "T(Z) matrix : " << endl; T1.dispMat(); cout << "S(Z) matrix : " << endl; S1.dispMat();
The Output
T(Z) matrix : Laurent Matrix (1,1) : 1*z^(0) (1,2) : 0*z^(0) (2,1) : -0.176777*z^(1)+0.353553*z^(0)+1.06066*z^(-1)+0.353553*z^(-2)-0.176777*z ^(-3) (2,2) : 1*z^(0) S(Z) matrix : Laurent Matrix (1,1) : 1*z^(0) (1,2) : 0.353553*z^(1)-0.707107*z^(0)+0.353553*z^(-1) (2,1) : 0*z^(0) (2,2) : 1*z^(0)
Scaling and The Inverse Of a Matrix
I have used the most basic and very restrictive algorithm to invert a 2X2 matrix. It works only if the determinant is a mononomial. Otherwise it returns all zeros. Scaling by a scalar is straightforward as the name implies.
T1.scale(2.2); cout << "T(Z) matrix Scaled by 2.2 : " << endl; T1.dispMat(); LaurentMat<double> IS; S1.MatInv(IS); cout << "Inverse of S(Z) matrix : " << endl; IS.dispMat();
The Output
T(Z) matrix Scaled by 2.2 : Laurent Matrix (1,1) : 2.2*z^(0) (1,2) : 0*z^(0) (2,1) : -0.388909*z^(1)+0.777817*z^(0)+2.33345*z^(-1)+0.777817*z^(-2)-0.388909*z ^(-3) (2,2) : 2.2*z^(0) Inverse of S(Z) matrix : Laurent Matrix (1,1) : 1*z^(0) (1,2) : -0.353553*z^(1)+0.707107*z^(0)-0.353553*z^(-1) (2,1) : 0*z^(0) (2,2) : 1*z^(0) Press any key to continue.
Matrix Addition, Subtraction and Multiplication
MatAdd, MatSub and MatMult add, subtract and multiply two matrices respectively.
LaurentMat<double> addm,subm,multm; addm.MatAdd(T1,S1); subm.MatSub(T1,S1); multm.MatMult(T1,S1); cout << " T(Z)+S(Z) = " << endl; addm.dispMat(); cout << endl; cout << " T(Z)-S(Z) = " << endl; subm.dispMat(); cout <<endl; cout << " T(Z)*S(Z) = " << endl; multm.dispMat(); cout <<endl;
The Output
T(Z)+S(Z) = Laurent Matrix (1,1) : 3.2*z^(0) (1,2) : 0.353553*z^(1)-0.707107*z^(0)+0.353553*z^(-1) (2,1) : -0.388909*z^(1)+0.777817*z^(0)+2.33345*z^(-1)+0.777817*z^(-2)-0.388909*z ^(-3) (2,2) : 3.2*z^(0) T(Z)-S(Z) = Laurent Matrix (1,1) : 1.2*z^(0) (1,2) : -0.353553*z^(1)+0.707107*z^(0)-0.353553*z^(-1) (2,1) : -0.388909*z^(1)+0.777817*z^(0)+2.33345*z^(-1)+0.777817*z^(-2)-0.388909*z ^(-3) (2,2) : 1.2*z^(0) T(Z)*S(Z) = Laurent Matrix (1,1) : 2.2*z^(0) (1,2) : 0.777817*z^(1)-1.55563*z^(0)+0.777817*z^(-1) (2,1) : -0.388909*z^(1)+0.777817*z^(0)+2.33345*z^(-1)+0.777817*z^(-2)-0.388909*z ^(-3) (2,2) : -0.1375*z^(2)+0.55*z^(1)+2.3375*z^(0)-1.1*z^(-1)+0.1375*z^(-2)+0.55*z^(- 3)-0.1375*z^(-4) Press any key to continue.
A Simple Example demonstrating the use of LaurentMat class
This code also includes "filter.h" only because I am using a biorthogonal filter to set the matrix. You may not need to include "filter.h" usually if you are setting up matrices on your own.
#include <iostream> #include <cmath> #include <vector> #include <string> #include <algorithm> #include "lwave.h" #include "filter.h" using namespace std; int main() { string name="bior2.2"; Laurent<double> lpd,hpd,lpr,hpr; lpoly(name,lpd,hpd,lpr,hpr); LaurentMat<double> matrix; matrix.setMat(lpd,lpr,hpd,hpr); Laurent<double> determinant; matrix.Det(determinant); cout << "The Matrix : " << endl; matrix.dispMat(); cout << endl; cout << " The Determinant : "; determinant.dispPoly(); LaurentMat<double> T1,S1; T1.TZ(lpd); S1.SZ(hpd); cout << "T(Z) matrix : " << endl; T1.dispMat(); cout << "S(Z) matrix : " << endl; S1.dispMat(); T1.scale(2.2); cout << "T(Z) matrix Scaled by 2.2 : " << endl; T1.dispMat(); LaurentMat<double> IS; S1.MatInv(IS); cout << "Inverse of S(Z) matrix : " << endl; IS.dispMat(); LaurentMat<double> addm,subm,multm; addm.MatAdd(T1,S1); subm.MatSub(T1,S1); multm.MatMult(T1,S1); cout << " T(Z)+S(Z) = " << endl; addm.dispMat(); cout << endl; cout << " T(Z)-S(Z) = " << endl; subm.dispMat(); cout <<endl; cout << " T(Z)*S(Z) = " << endl; multm.dispMat(); cout <<endl; return 0; }
The Output Follows
The Matrix : Laurent Matrix (1,1) : -0.176777*z^(1)+0.353553*z^(0)+1.06066*z^(-1)+0.353553*z^(-2)-0.176777*z ^(-3) (1,2) : 0.353553*z^(0)+0.707107*z^(-1)+0.353553*z^(-2) (2,1) : 0.353553*z^(1)-0.707107*z^(0)+0.353553*z^(-1) (2,2) : 0.176777*z^(2)+0.353553*z^(1)-1.06066*z^(0)+0.353553*z^(-1)+0.176777*z^( -2) The Determinant : -0.03125*z^(3)+0*z^(2)+0.375*z^(1)+1.38778e-017*z^(0)-0.6875* z^(-1)-1.38778e-017*z^(-2)+0.375*z^(-3)+0*z^(-4)-0.03125*z^(-5) T(Z) matrix : Laurent Matrix (1,1) : 1*z^(0) (1,2) : 0*z^(0) (2,1) : -0.176777*z^(1)+0.353553*z^(0)+1.06066*z^(-1)+0.353553*z^(-2)-0.176777*z ^(-3) (2,2) : 1*z^(0) S(Z) matrix : Laurent Matrix (1,1) : 1*z^(0) (1,2) : 0.353553*z^(1)-0.707107*z^(0)+0.353553*z^(-1) (2,1) : 0*z^(0) (2,2) : 1*z^(0) T(Z) matrix Scaled by 2.2 : Laurent Matrix (1,1) : 2.2*z^(0) (1,2) : 0*z^(0) (2,1) : -0.388909*z^(1)+0.777817*z^(0)+2.33345*z^(-1)+0.777817*z^(-2)-0.388909*z ^(-3) (2,2) : 2.2*z^(0) Inverse of S(Z) matrix : Laurent Matrix (1,1) : 1*z^(0) (1,2) : -0.353553*z^(1)+0.707107*z^(0)-0.353553*z^(-1) (2,1) : 0*z^(0) (2,2) : 1*z^(0) T(Z)+S(Z) = Laurent Matrix (1,1) : 3.2*z^(0) (1,2) : 0.353553*z^(1)-0.707107*z^(0)+0.353553*z^(-1) (2,1) : -0.388909*z^(1)+0.777817*z^(0)+2.33345*z^(-1)+0.777817*z^(-2)-0.388909*z ^(-3) (2,2) : 3.2*z^(0) T(Z)-S(Z) = Laurent Matrix (1,1) : 1.2*z^(0) (1,2) : -0.353553*z^(1)+0.707107*z^(0)-0.353553*z^(-1) (2,1) : -0.388909*z^(1)+0.777817*z^(0)+2.33345*z^(-1)+0.777817*z^(-2)-0.388909*z ^(-3) (2,2) : 1.2*z^(0) T(Z)*S(Z) = Laurent Matrix (1,1) : 2.2*z^(0) (1,2) : 0.777817*z^(1)-1.55563*z^(0)+0.777817*z^(-1) (2,1) : -0.388909*z^(1)+0.777817*z^(0)+2.33345*z^(-1)+0.777817*z^(-2)-0.388909*z ^(-3) (2,2) : -0.1375*z^(2)+0.55*z^(1)+2.3375*z^(0)-1.1*z^(-1)+0.1375*z^(-2)+0.55*z^(- 3)-0.1375*z^(-4) Press any key to continue.